Immunity to Intracellular Salmonella Depends on Surface-associated Antigens

نویسندگان

  • Somedutta Barat
  • Yvonne Willer
  • Konstantin Rizos
  • Beatrice Claudi
  • Alain Mazé
  • Anne K. Schemmer
  • Dennis Kirchhoff
  • Alexander Schmidt
  • Neil Burton
  • Dirk Bumann
چکیده

Invasive Salmonella infection is an important health problem that is worsening because of rising antimicrobial resistance and changing Salmonella serovar spectrum. Novel vaccines with broad serovar coverage are needed, but suitable protective antigens remain largely unknown. Here, we tested 37 broadly conserved Salmonella antigens in a mouse typhoid fever model, and identified antigen candidates that conferred partial protection against lethal disease. Antigen properties such as high in vivo abundance or immunodominance in convalescent individuals were not required for protectivity, but all promising antigen candidates were associated with the Salmonella surface. Surprisingly, this was not due to superior immunogenicity of surface antigens compared to internal antigens as had been suggested by previous studies and novel findings for CD4 T cell responses to model antigens. Confocal microscopy of infected tissues revealed that many live Salmonella resided alone in infected host macrophages with no damaged Salmonella releasing internal antigens in their vicinity. In the absence of accessible internal antigens, detection of these infected cells might require CD4 T cell recognition of Salmonella surface-associated antigens that could be processed and presented even from intact Salmonella. In conclusion, our findings might pave the way for development of an efficacious Salmonella vaccine with broad serovar coverage, and suggest a similar crucial role of surface antigens for immunity to both extracellular and intracellular pathogens.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interactions of Salmonella enterica with dendritic cells

Dendritic cells (DCs) form an important link between innate and adaptive immunity. However, DCs are also deployed as vehicles for systemic spread of pathogens. Salmonella is an important gastrointestinal pathogen causing diseases ranging from gastroenteritis to typhoid fever. DCs play an important role in the immunity against Salmonella infection, but this pathogen has also evolved efficient me...

متن کامل

Salmonella choleraesuis and Salmonella typhimurium associated with liver cells after intravenous inoculation of rats are localized mainly in Kupffer cells and multiply intracellularly.

Male Sprague-Dawley rats were inoculated intravenously with Salmonella choleraesuis or Salmonella typhimurium and used over 3 consecutive days to produce highly enriched (greater than 95% homogenous) preparations of Kupffer and mononuclear cells (KC), liver endothelial cells (LEC), and hepatocytes. The methods involved collagenase perfusion of the liver in situ, differential centrifugation of l...

متن کامل

Intracellular Salmonella inhibit antigen presentation by dendritic cells.

Dendritic cells (DC) are important APCs linking innate and adaptive immunity. During analysis of the intracellular activities of Salmonella enterica in DC, we observed that viable bacteria suppress Ag-dependent T cell proliferation. This effect was dependent on the induction of inducible NO synthase by DC and on the function of virulence genes in Salmonella pathogenicity island 2 (SPI2). Intrac...

متن کامل

Human monocytic U937 cells kill Salmonella in vitro by NO-independent mechanisms.

Nitric oxide (NO) has a central role in host defense against intracellular microbes. HLA-B27 has been shown to directly modulate host-microbe interaction in vitro, leading to the impaired elimination of Salmonella in human monocytic U937 cells. Here, we studied whether impaired elimination of Salmonella would result from differences in NO production between HLA-B27- and HLA-A2-transfected U937 ...

متن کامل

Salmonella enterica serovars Typhimurium and Typhi as model organisms

The lifestyle of intracellular pathogens has always questioned the skill of a microbiologist in the context of finding the permanent cure to the diseases caused by them. The best tool utilized by these pathogens is their ability to reside inside the host cell, which enables them to easily bypass the humoral immunity of the host, such as the complement system. They further escape from the intrac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2012